Comparison of Different Reconstruction Algorithms for Decreasing the Exposure Dose during Digital Breast Tomosynthesis: A Phantom Study

نویسنده

  • Tsutomu Gomi
چکیده

We compared reconstruction algorithms [filtered back projection (FBP), maximum likelihood expectation maximization (MLEM), and the simultaneous iterative reconstruction technique (SIRT)] in terms of the radiation dose and image quality, for exploring the possibility of decreasing the radiation dose during digital breast tomosynthesis (DBT). The three algorithms were implemented using a DBT system and experimentally evaluated using measurements, such as signal differenceto-noise ratio (SDNR) and intensity profile, on a BR3D phantom (in-focus plane image). The possible radiation dose reduction, contrast improvement, and artifact reduction in DBT were evaluated using different exposure levels and the three reconstruction techniques. We performed statistical analysis (one-way analysis of variance) of the SDNR data. The effectiveness of each technique for enhancing the visibility of the BR3D phantom was quantified with regard to SDNR (FBP versus MLEM, P < 0.05; FBP vs. SIRT, P < 0.05; MLEM vs. SIRT, P = 0.945); the artifact reduction was quantified with regard to the intensity profile. MLEM and SIRT produced reconstructed images with SDNR values indicative of low-contrast visibility. The SDNR value for the half-radiation dose MLEM and SIRT images was close to that of the FBP reference radiation dose image. Artifacts were decreased in the MLEM and SIRT images (in the in-focus plane) according to the intensity profiles that we obtained. With MLEM and SIRT, the radiation dose may be decreased to half comparison with FBP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Reconstruction Algorithms Regarding Exposure Dose Reductions during Digital Breast Tomosynthesis

This study compared reconstruction algorithms [filtered back projection (FBP) and simultaneous iterative reconstruction technique (SIRT)] with respect to radiation doses and image quality and suggested the possibility of decreasing the exposure dose in digital breast tomosynthesis (DBT). These two existing algorithms were implemented using a DBT system and experimentally evaluated using contras...

متن کامل

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to...

متن کامل

Multi-beam X-ray source breast tomosynthesis reconstruction with different algorithms.

Digital breast tomosynthesis is a new technique to improve the early detection of breast cancer by providing three-dimensional reconstruction volume of the object with limited-angle projection images. This paper investigated the image reconstruction with a standard biopsy training breast phantom using a novel multi-beam X-ray sources breast tomosynthesis system. Carbon nanotube technology based...

متن کامل

Development of an Analytic Breast Phantom for Quantitative Comparison of Reconstruction Algorithms for Digital Breast Tomosynthesis

Digital breast tomosynthesis (DBT) is an emerging modality for breast imaging. A typical tomosynthesis image is reconstructed from projection data acquired at a limited number of views over a limited angular range. In general, the quantitative accuracy of the image can be significantly compromised by severe artifacts and non-isotropic resolution resulting from the incomplete data. Nevertheless,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015